3,148 research outputs found

    On a New Characterization of Linear Passive Systems

    Get PDF
    Characterization of linear passive system

    A user's manual for the Automatic Synthesis Program /program C/

    Get PDF
    Digital computer program for numerical solution of problems in system theory involving linear mathematic

    Single shot parameter estimation via continuous quantum measurement

    Full text link
    We present filtering equations for single shot parameter estimation using continuous quantum measurement. By embedding parameter estimation in the standard quantum filtering formalism, we derive the optimal Bayesian filter for cases when the parameter takes on a finite range of values. Leveraging recent convergence results [van Handel, arXiv:0709.2216 (2008)], we give a condition which determines the asymptotic convergence of the estimator. For cases when the parameter is continuous valued, we develop quantum particle filters as a practical computational method for quantum parameter estimation.Comment: 9 pages, 5 image

    Magnetometry via a double-pass continuous quantum measurement of atomic spin

    Full text link
    We argue that it is possible in principle to reduce the uncertainty of an atomic magnetometer by double-passing a far-detuned laser field through the atomic sample as it undergoes Larmor precession. Numerical simulations of the quantum Fisher information suggest that, despite the lack of explicit multi-body coupling terms in the system's magnetic Hamiltonian, the parameter estimation uncertainty in such a physical setup scales better than the conventional Heisenberg uncertainty limit over a specified but arbitrary range of particle number N. Using the methods of quantum stochastic calculus and filtering theory, we demonstrate numerically an explicit parameter estimator (called a quantum particle filter) whose observed scaling follows that of our calculated quantum Fisher information. Moreover, the quantum particle filter quantitatively surpasses the uncertainty limit calculated from the quantum Cramer-Rao inequality based on a magnetic coupling Hamiltonian with only single-body operators. We also show that a quantum Kalman filter is insufficient to obtain super-Heisenberg scaling, and present evidence that such scaling necessitates going beyond the manifold of Gaussian atomic states.Comment: 17 pages, updated to match print versio

    Annual acknowledgement of manuscript reviewers

    Get PDF
    The editors of Journal of the International Society of Sports Nutrition would like to thank all our reviewers who have contributed to the journal in Volume 10 (2013). The tireless work that all of you have given to us to enhance our journal is highly appreciated. We can’t thank you enough

    A CubeSat for Calibrating Ground-Based and Sub-Orbital Millimeter-Wave Polarimeters (CalSat)

    Full text link
    We describe a low-cost, open-access, CubeSat-based calibration instrument that is designed to support ground-based and sub-orbital experiments searching for various polarization signals in the cosmic microwave background (CMB). All modern CMB polarization experiments require a robust calibration program that will allow the effects of instrument-induced signals to be mitigated during data analysis. A bright, compact, and linearly polarized astrophysical source with polarization properties known to adequate precision does not exist. Therefore, we designed a space-based millimeter-wave calibration instrument, called CalSat, to serve as an open-access calibrator, and this paper describes the results of our design study. The calibration source on board CalSat is composed of five "tones" with one each at 47.1, 80.0, 140, 249 and 309 GHz. The five tones we chose are well matched to (i) the observation windows in the atmospheric transmittance spectra, (ii) the spectral bands commonly used in polarimeters by the CMB community, and (iii) The Amateur Satellite Service bands in the Table of Frequency Allocations used by the Federal Communications Commission. CalSat would be placed in a polar orbit allowing visibility from observatories in the Northern Hemisphere, such as Mauna Kea in Hawaii and Summit Station in Greenland, and the Southern Hemisphere, such as the Atacama Desert in Chile and the South Pole. CalSat also would be observable by balloon-borne instruments launched from a range of locations around the world. This global visibility makes CalSat the only source that can be observed by all terrestrial and sub-orbital observatories, thereby providing a universal standard that permits comparison between experiments using appreciably different measurement approaches

    Properties of nonaqueous electrolytes Quarterly report, 20 Jun. - 19 Sep. 1967

    Get PDF
    Electrolyte preparation, and physical property and nuclear magnetic resonance structural studies of nonaqueous electrolyte

    The QCD equation of state at finite density from analytical continuation

    Get PDF
    We determine the equation of state of QCD at finite chemical potential, to order (μB/T)6(\mu_B/T)^6, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to Nt=16N_t=16 temporal resolution. The QCD pressure and interaction measure are calculated along the isentropic trajectories in the (T, μB)(T,~\mu_B) plane corresponding to the RHIC Beam Energy Scan collision energies. Their behavior is determined through analytic continuation from imaginary chemical potentials of the baryonic density. We also determine the Taylor expansion coefficients around μB=0\mu_B=0 from the simulations at imaginary chemical potentials. Strangeness neutrality and charge conservation are imposed, to match the experimental conditions.Comment: 5 pages, 4 figure

    A theory of the infinite horizon LQ-problem for composite systems of PDEs with boundary control

    Full text link
    We study the infinite horizon Linear-Quadratic problem and the associated algebraic Riccati equations for systems with unbounded control actions. The operator-theoretic context is motivated by composite systems of Partial Differential Equations (PDE) with boundary or point control. Specific focus is placed on systems of coupled hyperbolic/parabolic PDE with an overall `predominant' hyperbolic character, such as, e.g., some models for thermoelastic or fluid-structure interactions. While unbounded control actions lead to Riccati equations with unbounded (operator) coefficients, unlike the parabolic case solvability of these equations becomes a major issue, owing to the lack of sufficient regularity of the solutions to the composite dynamics. In the present case, even the more general theory appealing to estimates of the singularity displayed by the kernel which occurs in the integral representation of the solution to the control system fails. A novel framework which embodies possible hyperbolic components of the dynamics has been introduced by the authors in 2005, and a full theory of the LQ-problem on a finite time horizon has been developed. The present paper provides the infinite time horizon theory, culminating in well-posedness of the corresponding (algebraic) Riccati equations. New technical challenges are encountered and new tools are needed, especially in order to pinpoint the differentiability of the optimal solution. The theory is illustrated by means of a boundary control problem arising in thermoelasticity.Comment: 50 pages, submitte
    corecore